

Revision: 25/06/2021 Page 1 of 6

Technical Data:

Base	Polyester, styrene free								
Consistency	Stable paste								
Curing system	Chemical reaction								
Full Curing Time (20°C/65% R.H.)	Temp. substrate Working time Dry substrate Moist substra								
	-5°C	90 min	360 min	720 min					
	0°C	45 min	180 min	360 min					
	5°C	25 min	120 min	240 min					
	10°C	15 min	80 min	160 min					
	20°C	6 min	45 min	90 min					
	30°C	4 min	25 min	50 min					
	35°C	2 min	20 min	40 min					
Specific Gravity	1,74 g/cm ³								
Temperature Resistance	-40 °C to + 80°C								
Dynamic elasticity modulus	4.000 N/mm ²								
Maximum bending tensile strength	30 N/mm ²								
Maximum compression strength	75 N/mm²								

Product:

SOUDAFIX P300-SF is a two-component anchoring resin for the pressure-free securing of threaded rods (ETA: M8 - M24), studs, reinforcing bars, threaded collars, profiles etc in various solid and hollow materials, such as uncracked concrete, aerated concrete, solid or hollow brick, porous concrete, natural stone, plasterboard walls, etc...

Characeristics:

- Easy to use and to apply
- Can be applied with standard caulking gun
- Fast cure
- Styrene free (low odour)
- Wide application area even in wet boreholes
- Overhead application
- Cartridge re-usable by simply exchanging static mixer
- Ideal for anchoring in hollow brick in combination with sleeves
- Watertight and impermeable fixing
- European Technical Assessment ETA 11/0447 based on ETAG 001 Part 1 and 5 for application in uncracked concrete
- European Technical Assessment ETA 13/0064 based on ETAG 029 for application in masonry

Application area:

Securing of heavy loads in solid and hollow building materials. Pressure free anchoring even close to edges.

Packaging:

Colour: dark grey after mixing

Cartridge: 280 ml and 300 ml for use with standard caulking gun, 410 ml with special gun.

Shelf life:

18 months in original packaging. Store at cool and dry place at temperatures between +5°C en +25°C.

Remark: The directives contained in this documentation are the result of our experiments and of our experience and have been submitted in good faith. Because of the diversity of the materials and substrates and the great number of possible applications which are out of our control, we cannot accept any responsibility for the results obtained. In every case it is recommended to carry out preliminary experiments.

Revision: 25/06/2021 Page 2 of 6

Substrates:

Type: All usual porous building substrates, poor adhesion on smooth non-porous materials. State: Clean, dry, free of dust and grease Treatment: no particular treatment of substrate needed. In hollow materials the use of sleeves is necessary.

Application

Application method: two-component gun Application temperature: -5°C to +39°C Clean:

Before cure: wipe off excess of product and clean afterwards with white spirit or acetone

After cure: it is recommended to let the product fully cure, so that it can easily be removed mechanically with hammer and chisel.

Repair: with the same material

Safety recommendations:

Apply the usual industrial hygiene precautions. Only use in well ventilated spaces. Consult the label for more information.

Remarks:

There is a risk of staining on porous substrates such as natural stone. On such substrates a preliminary compatibility test is recommended.

Instructions for use:

- Drill hole at recommended depth
- Clean drill hole with brush and air pump thoroughly
- Screw static mixer onto cartridge
- Dispense the first 10 cm of the product to waste (on piece of cardboard) until an even colour (dark grey) is achieved, and the product is well mixed
- Solid stone: fill the drill hole from bottom up.
 Hollow brick: insert sleeve and fill it bottom up, so that the resin is pressed through the tiny holes of the sleeve
- Insert anchoring rod with twisting left-right motion
- Inspect the drill hole for adequate filling
- Observe hardening time. Don't move the anchoring rod during curing
- Leave the excess of product to cure as well.
 Remove it mechanically with hammer and chisel once cured
- Install component, applying the right torque

Remark: The directives contained in this documentation are the result of our experiments and of our experience and have been submitted in good faith. Because of the diversity of the materials and substrates and the great number of possible applications which are out of our control, we cannot accept any responsibility for the results obtained. In every case it is recommended to carry out preliminary experiments.

Revision: 25/06/2021 Page 3 of 6

Installation parameters for threaded rods in uncracked concrete:

Diameter threaded rod	d	mm	M8	M10	M12	M16	M20	M24
Drill diameter	d_0	mm	10	12	14	18	24	28
Min. anchorage depth	h _{ef,min}	mm	60	60	70	80	90	96
Max. anchorage depth	h _{ef,max}	mm	160	200	240	320	400	480
Edge distance	C _{cr,N}	mm	80	90	110	125	170	210
Min. edge distance	C _{min}	mm	40	50	60	80	100	120
Axial distance	S _{cr,N}	mm	160	180	220	250	340	420
Min. axial distance	S _{min}	mm	40	50	60	80	100	120
Min. thickness of member	h _{min}	mm		_{ef} + 30 mı ≥100 mm		h _{ef} + 2 d ₀		0
Tightening torque	T _{inst}	Nm	10	20	40	60	120	160

Installation parameters for threaded rods in masonry:

Diameter threaded rod	d	mm	М8	M10	M12	M16		
Drill diameter	d ₀	mm	12	16	20	20		
Depth sleeve	h _{nom}	mm	80	85	85	85		
Anchorage depth	h _{ef}	mm	80	85	85	85		
Edge distance	C _{cr,N}	mm	250					
Min. edge distance	C _{min}	mm	250					
Axial distance	S _{cr,N, single}	mm	250					
Tightening torque	T _{inst}	Nm	2					

Remark: The directives contained in this documentation are the result of our experiments and of our experience and have been submitted in good faith. Because of the diversity of the materials and substrates and the great number of possible applications which are out of our control, we cannot accept any responsibility for the results obtained. In every case it is recommended to carry out preliminary experiments.

Revision: 25/06/2021 Page 4 of 6

Table C1: Chara	cteristic values for tensi	le strengt	th of thre	eaded ro	ds in ur	ncracke	d concr	ete	
Diameter threaded rods					M10	M12	M16	M20	M24
Steel failure									
Characteristic tensile strengt	$N_{Rk,s}$	kN			A _s :	x f _{uk}			
Combined pullout and concr	ete cone failure								
Characteristic tensile strengt	h in uncracked concrete (220/25							
Temperature range I:	Dry and wet concrete	T _{Rk,unr}	N/mm	8,5	8,0	8,0	8,0	8,0	8,0
40°C / 24°C	Flooded bore hole	TRk,unr	N/mm	8,5	8,0	8,0	2 M16 A _s × f _{uk} 3,0 8,0 3,0 6,0 5,0 6,0 1,04 1,08 1,13 1,15 1,17 1,19 10,1 10,1 1,5 h _{ef} 3,0 h _{ef}	8,0	8,0
Temperature range II:	Dry and wet concrete	TRkunr	N/mm	6,5	6,0	6,0	6,0	6,0	6,0
80°C / 50°C	Flooded bore hole	T _{Rk,unr}	N/mm	6,5	6,0	6,0	6,0	6,0	6,0
	•	C25	/30	-		1,0	04		
		C30	/37	1,08					
la i ft f	lead a successful III-	C35	C35/45 1,1		13				
Increasing factors for uncracl	ked concrete 4c	C40	/50	1,15					
		C45/55		1,17					
		C50/60		1,19					
Factor according CEN/TS 199	92-4-5 Section 6.2.2.3	k ₈	-			10),1		
Concrete cone failure		=							
Factor according CEN/TS 199	92-4-5 Section 6.2.3.1	k _{ucr}	-	10,1					
Edge distance		C _{cr,N}	mm	1,5 h _{ef}					
Spacing			mm	3,0 h _{ef}					
Splitting failure									
Edge distance		C _{cr,sp}	mm	$1,0 . h_{ef} \le 2 . h_{ef} (2,5 - h/h_{ef}) \le 2,4 . h_{ef}$				ef	
Spacing		S _{cr,sp}	mm	2 c _{cr,sp}					
Installation safety factor (dry a	and wet concrete)	γ ₂ = '	Y inst	1,2					
Installation safety factor (flood	ded bore hole)	γ ₂ = Υ	Y inst	1,2					

Remark: The directives contained in this documentation are the result of our experiments and of our experience and have been submitted in good faith. Because of the diversity of the materials and substrates and the great number of possible applications which are out of our control, we cannot accept any responsibility for the results obtained. In every case it is recommended to carry out preliminary experiments.

Revision: 25/06/2021 Page 5 of 6

Table C2: Characteristic values for shear loads in uncracked concrete										
Diameter threaded rod		М8	M10	M12	M16	M20	M24			
Steel failure without lever arm										
Characteristic values for shear loads	V_{Rks}	kN			0,5 x	A _s x f _{uk}				
Ductility factor according CEN / TS 1992-4-5 Section 6.3.2.1	k ₂	-	0,8							
Steel failure with lever arm										
Characteristic bending moment	M^0_{Rks}	Nm	1,2 x W _{el} x f _{uk}							
Concrete pryout failure										
Factor k_3 in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of TR029	k ₍₃₎	-	2.0							
Installation safety factor	$\gamma_2 = \gamma_{inst}$	-	1,0							
Concrete edge failure										
Effective anchor length	I _f	mm	$I_{f} = \min(h_{ef}; 8 d_{nom})$							
Outside diameter of anchor	d _{nom}	mm	m 8 10 12 16 20				24			
Installation safety factor	$\gamma_2 = \gamma_{inst}$	-			1	,0				

Remark: The directives contained in this documentation are the result of our experiments and of our experience and have been submitted in good faith. Because of the diversity of the materials and substrates and the great number of possible applications which are out of our control, we cannot accept any responsibility for the results obtained. In every case it is recommended to carry out preliminary experiments.

Revision: 25/06/2021 Page 6 of 6

Table C3: Characteristic tensile and shear strengths of threaded rods in masonry									
Hollow clay brick,	Compressive strength ≥ 6 N	/mm²	Characteristic strength ¹⁾						
			40°C/24°C	80°C/50°C	All temperatures				
Sleeve	Diameter threaded rod	Anchor depth h _{ef} (mm)	Tensile N _{Rk} (kN) ²)	Tensil N _{Rk} (kN)²)	Shear V _{rk} (kN) ³⁾				
SH 12x80	M8	80	Ca. 0,5 - 0,75	Ca. 0,3 - 0,5	Ca. 2,0 - 2,5				
SH 16x85	M10	85	Ca. 1,2 - 1,5	Ca. 0,75 - 1,2	Ca. 2,0 - 4,0				
SH 20x85	M12/M16	85	Ca. 1,2 - 2,0	Ca. 0,75 - 1,5	Ca. 3,0 - 4,0				
Hollow clay brick,	ow clay brick, Compressive strength ≥ 10 N/mm²			Characteristic strength ¹⁾					
			40°C/24°C	80°C/50°C	All temperatures				
Sleeve	Diameter threaded rod	Anchor depth h _{ef} (mm)	Tensile N _{Rk} (kN) ²)	Tensile N _{Rk} (kN)²)	Shear V _{rk} (kN) ³⁾				
SH 12x80	M8	80	Ca. 1,2 - 2,0	Ca. 0,9 - 1,5	Ca. 3,0				
SH 16x85	M10	85	Ca. 1,5 - 2,0	Ca. 0,9 - 1,5	Ca. 3,0 - 3,5				
SH 20x85	M12/M16	85	Ca. 1,5 - 2,0	Ca. 0,9 - 1,5	Ca. 3,5 - 4,0				

¹⁾ Details per brick type see ETA 13/0064

Remark: The directives contained in this documentation are the result of our experiments and of our experience and have been submitted in good faith. Because of the diversity of the materials and substrates and the great number of possible applications which are out of our control, we cannot accept any responsibility for the results obtained. In every case it is recommended to carry out preliminary experiments.

 $^{^{2)}}$ For design according ETAG 029, Annex C: $N_{Rk} = N_{Rk,p} = N_{Rk,p}$; $N_{Rk,s}$ according Table C2 Annex C2; Calculation $N_{Rk,pb}$ see ETAG 029, Annex C

 $^{^{3)}}$ For V $_{\rm Rk,s}$ see Annex C 2, Table C2; Calculation of V $_{\rm Rk,pb}$ and V $_{\rm Rk,c}$ see ETAG 029, Annex C